
Optimizing VBA Code
Part One: Variables

by Robert Delwood

This is the first in a series of articles about optimizing VBA (Visual Basic for Applications) code. The information here
is drawn from my book, The Secret Life of Word: A Professional Writer's Guide to Microsoft Word Automation.

VBA is known to be a slow language. Often this lack of speed is not a problem. If the routines are small enough or if
the data being processed is not too large, the difference is not noticeable. However, as you gain experience with VBA
and create longer and more complex programs, the suggestions described in this series can help improve the performance
of your code.

Declare all variables

VBA does not require variables to be declared (with a Dim statement) prior to use. That means you can introduce
variables at any point, with no declaration. This is convenient, but can be inefficient. VBA treats variables that hold
string or text values differently from those holding numbers, and within numbers, VBA treats integers differently from
real numbers. However, if you do not declare the type of a variable, it will be created with the type Variant, which is a
versatile, but inefficient and slow data type.

As a matter of best practice, always explicitly declare variables. Here is a guide to the most common data types:

• Strings or text should be declared as String.
• Integers should be declared as Long or Integer.
• Numbers requiring decimal places should be declared as Double or Single.
• Items that are objects (rather than strings or numbers) should be declared as the exact type they are, and not as

the generic Object type.

For Word programming, you often need to know the exact type of an object, such as Paragraph, Hyperlink, or Range.
IntelliSense (the IDE's word completion feature) helps you select the correct type. You can use Word's document object
model help to select the Word object type.

Declaring the data type allows Word to use “early binding.” Early binding lets Word use declared variables considerably
faster than undeclared variables, since it doesn't have to convert the variable each time it encounters it. It also allows
you to use IntelliSense in the IDE.

Give each variable its own As statement

Each variable should have its own As statement, since As actually implements the type. For example, consider the
follow line:

Dim a, b, c as Long

Many users think that a, b, and c are all declared as Long. Actually, only the last one, c, is. The variables a, and b are
implicitly declared as Variant since neither has an As statement associated with it. What you should do is either:

Dim a as Long, b as Long, c as Long

Or

Copyright © 2011 Robert Delwood, All Rights Reserved.

/publications/word-secrets


Dim a as Long
Dim b as Long
Dim c as Long

Use Option Explicit

The Option explicit statement requires that each variable must be explicitly declared prior to use. Use this
statement once at the start of each code module (UserForm, Module, and Class Module).

To automatically have the statement included in any new module, do the following: from any Word document, click
ALT-F11 to get into the IDE, then Tools|Options, Editor tab, and in the Code Settings panel check Require Variable
Declaration.

In addition, Option Explicit helps prevent misspellings and possible debugging problems. For example, in the
following code snippet, one variable is misspelled.

Dim isCorrectName as Long
isCorrectName = isCorrectName + 1
if ifCorrectName > 0 then msgbox isCorrectName & " name has been located."

Without Option Explicit, any variable not previously encountered will be instantiated as a legitimate variable.
In the example, without Option Explicit, the misspelled variable ifCorrectName will be treated as a legitimate
variable, and the if statement will never be true. The variable, which should be isCorrectName but is misspelled
as ifCorrectName, will never be incremented and will stay at the default value of zero.

Using Option Explicit, the misspelled variable, ifCorrectName will cause a compile-time error, which can
be easily fixed.

Summary

Using just a few simple techniques can help you ensure that your variables will be declared and used in the most efficient
manner possible. In the next part of this article, I will discuss how to improve the performance of loops in VBA.

Copyright © 2011 Robert Delwood, All Rights Reserved.


	Optimizing VBA Code
	Declare all variables
	Give each variable its own As statement
	Use Option Explicit
	Summary



